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Abstract

Thermal imaging is a potential tool for estimating

plant temperature, which can be used as an indicator

of stomatal closure and water de®cit stress. In this

study, a new method for processing and analysing

thermal images was developed. By using remote

sensing software, the information from thermal and

visible images was combined, the images were

classi®ed to identify leaf area and sunlit and shaded

parts of the canopy, and the temperature statistics

for speci®c canopy components were calculated. The

method was applied to data from a greenhouse

water-stress experiment of Vicia faba L. and to ®eld

data for Vitis vinifera L. Vaseline-covered and water-

sprayed plants were used as dry and wet references,

respectively, and two thermal indices, based on tem-

perature differences between the canopy and refer-

ence surfaces, were calculated for single Vicia faba

plants. The thermal indices were compared with

measured stomatal conductance. The temperature

distributions of sunlit and shaded leaf area of Vitis

vinifera canopies from natural rainfall and irrigation

treatments were compared. The present method

provides two major improvements compared with

earlier methods for calculating thermal indices. First,

it allows more accurate estimation of the indices,

which are consequently more closely related to

stomatal conductance. Second, it gives more accur-

ate estimates of the temperature distribution of the

shaded and sunlit parts of canopy, and, unlike the

earlier methods, makes it possible to quantify the

relationship between temperature variation and

stomatal conductance.

Key words: Infrared thermography, remote sensing, stomatal

conductance, Vicia faba, Vitis vinifera.

Introduction

Remote sensing of stomatal closure and transpiration rates
from plants has great potential as a tool for indicating
irrigation need, and hence for improved crop management.
For any given environmental conditions, the leaf or canopy
temperature is directly related to the rate of evapo-
transpiration from the canopy surface. Therefore, infrared
sensing of the canopy temperature can be used to monitor
stomatal conductance or to estimate the transpiration rate
of plants (Jackson, 1982; Jones, 1999a; Merlot et al., 2002;
Jones et al., 2002).

The rate of evaporation is only one of many components
of the canopy energy balance that affect canopy tempera-
ture: factors such as radiation, windspeed, air temperature,
and air humidity also have major effects (Jones, 1992).
Without suf®cient information about these factors,
measurements of leaf temperature alone are not
enough to allow estimates of the transpiration rate or
the stomatal conductance. One solution is to make
use of `dry' and `wet' reference surfaces, where the
observed leaf temperature is compared with the tem-
perature that the same leaves would attain under the
conditions of zero and maximum transpiration at the
same environment (Jones et al., 1997). The dry surface
represents the situation without transpiration and the
wet surface represents the maximum potential rate of
transpiration. In earlier studies, some arti®cial reference
surfaces were used, for example, wet and dry ®lter paper
(Jones et al., 2002). The problem, however, is that the
thermal and radiative properties of these surfaces may
differ from those of the observed plants, so that their
energy balance differs from the real leaves. Therefore,
Jones et al. (2002) proposed the use of leaves sprayed with
water as wet references and leaves for which all
transpiration was prevented by covering in petroleum
jelly as dry references.
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Throughout the 1970s and 1980s in particular, there was
much effort on the development of thermal crop water-
stress indices that could be used for irrigation scheduling
purposes (Idso et al., 1981; Idso, 1982; Jackson, 1982; see
also Jones and Leinonen, 2003). These were based on the
measurement of canopy temperature using infrared therm-
ometers. A major problem with such measurements,
however, is that it is common for the ®eld of view of the
detector to include some background (e.g. soil or sky) in
addition to the leaves of the crop of interest, especially
before full ground cover is achieved. One method for
solving this problem was presented in an earlier study by
Jones et al. (2002). They used wet and dry reference
surfaces, located in a grapevine canopy, as thresholds, and
all temperatures between these thresholds, occurring in the
thermal image, were assumed to represent the temperature
of the canopy.

As an alternative to the estimation of crop water stress
from the mean temperature of the canopy, it has been
proposed that the variability of canopy temperature may
provide important information about the degree of
stomatal closure (Fuchs, 1990). By contrast with infrared
thermometry, thermal imaging allows information on the
temperatures of all areas in a scene to be obtained
simultaneously in one image. Therefore, thermal imagery
provides an ideal approach for the collection of the large
number of individual leaf temperatures that are necessary
for methods based on temperature frequency distributions.
Thermal imaging also allows leaves to be distinguished
from the background. If done manually, however, the
necessary image processing can be rather labour-intensive
and may also be dependent on subjective image interpret-
ation.

The present study outlines the development and testing
of new automated approaches to the extraction of leaf
temperatures from thermal images that are based on the
combination of information from thermal and visible/near
infrared images. Examples of the application of the method
in greenhouse and ®eld conditions are presented, including
the extraction of temperature frequency distributions.

Materials and methods

Experimental material

Greenhouse experiment: The greenhouse experiment was carried out
at the Scottish Crop Research Institute, Invergowrie, Scotland. In the
experiment, broad bean (Vicia faba L.) seeds were sown on 7 April
2003 into 4" square pots. Compost was used as potting material. The
temperature in the greenhouse was set to 23 °C for daytime and 18
°C for night-time. The daylength was 14 h and additional illumin-
ation was provided by sodium high pressure lamps. During the
experiment, groups of plants were exposed to a drought stress of 2 d
without water. The drought treatments for each experimental group
were started on subsequent days, so at the time of the measurements
(27 May), one group of seedlings had been exposed to a drought
treatment for one day and one group for two days. In addition to the
drought treatments, a control group of seedlings was watered daily.

Thermal and visual images were taken for ten plants from each
treatment. The thermal images were taken for each plant separately
with the SnapShot imager (see below) mounted on a tripod. In
addition to the experimental plant, parts of two other plants were
included in the image as dry and wet references. For the dry
reference, the leaves of one branch were covered with Vaseline to
prevent transpiration. The leaves of the wet reference plant were
sprayed with water about 1 min before taking the image.
Immediately after taking the thermal image, a visible image was
taken by placing the Dycam Agricultural Digital Camera (see below)
in front of the lens of the thermal imager, to make sure that both
images were taken from the same angle.

Field experiment: The ®eld measurements were conducted in July
2001 on mature grapevine (Vitis vinifera L. cvs Moscatel and CastelaÄo
(=Periquita)) leaves growing at the Portuguese Ministry of Agriculture
Research Station at PegoÄes, Portugal (8° 40¢ W; 38° 38¢ 30" N). Details
of the experiment are presented in Jones et al. (2002) and de Souza
et al. (2003). The vineyard was 5-years-old and established on a deep
sandy soil at 1 m spacing within the row and 2.5 m between rows. Each
variety was grown in a different area of the ®eld with a similar
experimental design. There were four blocks of four irrigation
treatments for each variety in a Latin square arrangement, with a single
experimental row and two guard rows. The treatments used in this
study were: NI (no irrigation) and FI (100% of ETC supplied through
two trickle lines placed 20 cm each side of the row). The result of the
treatment effects in this experiment have been presented earlier by
Jones et al. (2002). In the present study, the data are used to test the
method for estimating the canopy temperature.

Ancillary measurements

Immediately after taking the thermal and visible images, the
stomatal conductance of Vicia faba was measured using an AP4
porometer (Delta-T Devices, Burwell, Cambridge, England). Before
the measurements, a standard calibration was carried out as indicated
in the manual (Webb, 1990). A total of ®ve leaves were measured for
each plant. Environmental conditions (global and photosynthetically
active radiation, air temperature, and relative humidity) in the
greenhouse during the experiments were collected using DataHog
(Skye Instruments, Llandidrod Wells) and DL2e (Delta-T
Instruments, Burwell) data loggers. During the plant measurements,
the interval of the data collection was 30 s and at other times during
the experiment 10 min.

Thermal and visible imaging

Thermal images were obtained with an Infrared Solutions SnapShot
225 long-wave (8±12 mm) thermal imager with a 20 mm (17.2° ®eld
of view) lens (supplied by Alpine Components, Oban Road, St
Leonards-on-Sea, East Sussex, UK). The camera is a line-scan
imager producing images of 1203120 pixels at 14 bit dynamic
resolution, with corrections for object emissivity and background
temperature. Emissivity was set at 0.95 for viewing leaves. The
standard deviation of readings for individual pixels when measuring
a constant temperature black background at room temperature
was <0.35 °C. The iFOV or pixel size at closest focus (0.25 m) is
0.63 mm, increasing to 25.2 mm at 10 m. For corresponding visual
images under greenhouse conditions, an Agricultural Digital Camera
(Dycam, Woodland Hills, California, USA) was used. This provides
two-colour images in the red and near infrared (R/NIR) that allows
green plant material to be easily separated from background soil and
most other materials on account of their very different re¯ectances in
these two wavebands (Jones, 1992). Alternatively, a standard red/
green/blue (RGB) digital camera can also be used, and data for the
®eld experiment used a Canon digital Ixus instead of the Dycam
instrument.
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Image processing

The objective is to separate the areas of interest (for example, leaves)
from other objects included in the thermal image and to identify the
temperature distributions of the selected areas. The main steps of this
process are outlined in the following.

Initial manipulation: During continuous use of the thermal camera,
internal warming caused a drift in the calibration of the camera
resulting in a spatially varying error in the thermal images. These
relative errors were corrected by using images of constant tempera-
ture background (out-of-focus images of the lens cap) as a reference
(Jones et al., 2002). Each pixel of the reference image was subtracted
from the corresponding pixel of the actual image using the
SnapView 2.1 software provided. Images were exported as ASCII
text ®les for subsequent processing. The ®rst step (in Microsoft
Excel) was to add the mean temperature of the appropriate reference
image back to each pixel in the subtracted image. This step was
partly automated by building a Microsoft Excel macro for handling
the data ®les.

Overlaying images: Further processing of the thermal images was
carried out in the ENVI remote sensing software (Research Systems
Inc., Boulder, Colorado) with the visible images in Bitmap format,
and the corrected thermal images kept in text format. The thermal
images may be viewed in ENVI in grey scale, where the brightness
of each pixel indicates the measured temperature, or they may be
viewed as pseudo-colour images if required.

In order effectively to combine the information from the thermal
images and the visible images, it is essential that corresponding
pixels can be identi®ed from both types of images. In practice, this
means that (i) both images must cover exactly the same area and (ii)
the dimensions (and pixel sizes) of both images must be identical. In
order to ful®l these criteria, the visible image was warped and
resampled to overlay the thermal image exactly by using the Map
function of the ENVI software. Corresponding Ground Control
Points (GCPs) such as tips of leaves were selected manually from
both the thermal and visible images. Because of the similar geometry
of the two images, four points were generally suf®cient for accurate
overlaying of the images, especially if the points were spread evenly
within the thermal image. Another option for image overlaying,
made possible by the ENVI software, is to use preselected GCPs; this
option would be useful for automation in cases where several images
cover exactly the same area, for example, in studies of the dynamics
of transpiration. After selecting the GCPs, the visible image was
warped and resampled (using the Nearest Neighbour method) to
match the thermal image using a Polynomial Warp (order=1). The
dimensions of the warped image were selected to be identical to the
thermal image (1203120 pixels).

Classi®cation: Classi®cation was performed using Supervised
Classi®cation in ENVI; for a detailed description of the principles
of supervised classi®cation see appropriate texts (Mather, 1999;
Lillesand et al., 2004). This involved initial manual identi®cation of
`training areas' or Regions of Interest (ROIs) known to represent
leaves in the visible image. The spectral information from these
regions was then used to classify the visible image into pixels
representing plant leaves (classi®ed) and all other objects (un-
classi®ed), such as background and other non-green parts of the plant
such as ¯owers. Similar classi®cation procedures can be applied to
separate different components of the area of interest further. For
example, in the ®eld study, the leaf class was further separated into
sunlit and shaded areas, based on appropriate sunlit and shaded
ROIs. If necessary, other ROIs, representing, for example, back-
ground, can also be selected for additional training classes. From
different options available in the ENVI software, Spectral Angle

Mapper and Minimum Distance methods were found to be most
useful in this study. The Minimum Distance method determines the
mean vector of the training areas and calculates the Euclidean
distance of each unknown pixel to each of the mean training class
values. Each pixel is classi®ed to the nearest class, unless the
distance is greater than the predetermined (optional) maximum
distance, in which case the pixel remains unclassi®ed. The Spectral
Angle Mapper method calculates the vector angle between the
spectra of training classes and each unknown pixel. Each pixel is
classi®ed to a training class for which the spectral angle between it
and the pixel is the smallest. It is also possible to determine the
maximum accepted angle between a classi®ed pixel and a training
class. If the calculated angle is greater, the pixel remains unclassi®ed

In the case of the greenhouse data, the Spectral Angle Mapper
method was applied since it requires only one training class (leaf
area), and the classi®cation can be done based on the maximum
accepted vector angle only. Furthermore, compared with other
classi®cation methods, this method is relatively insensitive to
changes in illumination (Lillesand et al., 2004). However, in the
case of the ®eld data in this study, where the difference in the
illumination of the leaves is one of the classi®cation criteria, other
methods, including Minimum Distance, are more suitable.

The classi®cation step may be automated further by the use of
ENVI Spectral Libraries. This would be useful in conditions where
the spectral properties of the leaf area, for example, remain
unchanged for a series of images. In practice, this means that the
colour of the leaves or the light conditions do not change
signi®cantly during the imaging. In this case, an ROI, the spectral
properties of which represent the leaf area, can be selected from one
image only, and the spectral information of this region can be used to
build a Spectral Library to be applied in the classi®cation of other
images as described above.

For comparison, in addition to classi®cation done with the ENVI
software, a `visual classi®cation' for subsets of pixels was also
carried out. A pseudo-random subsample was obtained by selecting
one using an 11311 grid of pixels (every 10th pixel) in a warped
visible image. These sample pixels were visually categorized, either
as leaf or background, and compared with an automated classi®ca-
tion for 10 separate images.

Temperature analyses: The classi®cation results for the visible
images were then used to extract corresponding temperatures from
the thermal images. Using the ENVI Regions of Interest tool, a new
region was created from the area classi®ed as leaves. This region was
overlaid on the thermal image, and the ENVI Statistics tool was used
to calculate, for example, the mean temperature and the temperature
distribution from this area. If needed, additional regions could also
be selected for statistical analyses and the data exported for further
analysis. For example, the areas with `dry' reference leaves and
`wet' reference leaves could be separated from the visible image.
Since the visible spectrum of these regions could not be separated
from other leaf areas, the whole image was manually divided into
different areas, containing the `dry plant', the `wet plant', and the
experimental plant. These areas were then intersected with the
region with the leaf area, and the statistics were calculated separately
for each intersected region.

Calculations: thermal indices: Based on the temperature differences
between the experimental plant, the `dry plant', and the `wet plant',
the following thermal indices were calculated and used as a
comparison with the measured stomatal conductance (Jones, 1999a):

CWSI=(Tplant±Twet)/(Tdry±Twet) (1)

IG=(Tdry±Tplant)/(Tplant±Twet) (2)

Thermal imaging and plant stress 1425
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where Tplant, Tdry, and Twet are the mean temperatures of the leaf area
of the experimental plant, the dry reference plant, and the wet
reference plant, respectively.

The index IG can also be expressed as follows (Jones et al., 2002):

IG=glw(raW+(s/g)rHR) (3)
where glw is the leaf conductance to water vapour transfer, raW the
boundary layer resistance to water vapour, s the slope of the curve
relating saturating water vapour pressure to temperature, g the
psychrometric constant, and rHR the parallel resistance to heat and
radiative transfer. According to equation (3), if other factors remain
constant, the index IG is linearly related to the conductance (Jones,
1999b). As seen in equation (1), the index CWSI is linearly related to
leaf temperature, in the case where the temperatures of the wet and
dry references remain constant. These two indices are non-linearly
related to each other and, therefore, the relationship between CWSI
and stomatal conductance is also non-linear.

In order to evaluate the new method, the thermal indices were also
calculated by applying the thresholding method developed earlier by
Jones et al. (2002) (see above). Using the data from the greenhouse
experiment, two threshold temperatures were determined from
visually selected sample points from dry and wet reference plants in
thermal images. All temperatures between these thresholds in the
image were assumed to represent the temperature of the experimen-
tal plant. The mean temperature of this distribution, together with the
wet and dry reference temperatures, were used to calculate the
indices as described in equations (1) and (2).

Results

An example of the image processing for the greenhouse
data is presented in Fig. 1. The experimental plant is
situated in the middle, the wet reference plant on the left,
and the dry reference plant on the right. In the thermal
image, the brightness of the grey scale represents the
temperature. It can be seen that the wet reference is cooler
than the experimental plant, while the dry reference is
warmer. The background in the greenhouse situation was
generally warmer than any of the plants.

The manually selected GCPs which are used in the
warping of the visible image to produce Fig. 1C are
shown in the images (Fig. 1A, B). The classi®cation results
are shown in Fig. 1D. Visual evaluation of the results
indicates that, generally, the plants and the background
are correctly separated. However, it can be seen that
some parts of the actual leaf area are not classi®ed as
leaf. This area consists mainly of edge pixels, i.e. pixels
that are mixed with the background. By increasing
the maximum acceptable angle between vectors of the
training class and any pixel to be classi®ed (a parameter
in the ENVI Spectral Angle Mapper classi®cation pro-

Fig. 1. An example of image processing of Vicia faba grown in a greenhouse. (A) An original visible image and Ground Control Points used in
image overlaying, (B) corrected thermal image presented in a grey scale and Ground Control Points, (C) visible image warped and resampled to
match the thermal image, and (D) classi®ed leaf area overlaid with the thermal image and divided manually to represent the wet reference plant
(green), experimental plant (red), and dry reference plant (blue). The results represent image processing where the value of 0.1 for the maximum
vector angle parameter was used in the classi®cation. The letter w indicates the wet reference plant, d the dry reference plant, and p the
experimental plant.
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cedure), more `actual' (according to the visual classi®ca-
tion) leaf pixels were classi®ed as leaves, but on the other
hand, more pixels visually classi®ed as background were
incorrectly classi®ed as leaves by the automated classi®-
cation (Table 1).

Figure 2 shows an example of the extracted temperature
distributions for control and drought-stressed experimental
plants, together with the dry and wet reference histograms
in the greenhouse experiment. For comparison, the

temperature distribution for the whole non-classi®ed
image (also including the background) is presented. This
result shows that temperature distribution of the unclassi-
®ed image includes two main peaks with some subsidiar-
ies. The peaks with the lowest temperature consist mainly
of the wet reference plant and the experimental plant,
while the peak with the highest temperature consists
mainly of background, the temperature of which is close to
the temperature of the dry reference plant. By contrast, the
results for the classi®ed image clearly show single
distributions with one peak for the experimental plant
and for the dry and wet reference plants separately.

The effect of the value chosen for the maximum vector
angle (used as a classi®cation criterion in Spectral Angle
Mapper; Table 1) on the temperature estimation is shown
in Table 2. When the maximum accepted angle increases
(more pixels are classi®ed as plant), the calculated
temperature for the experimental plant and the wet
reference plant increase, while for the dry reference plant
there is little effect. This effect probably arises because
increasing the number of pixels classi®ed as plant means
that there are more mixed pixels, the temperature of which
is partially affected by background. In the present study,
the background temperature approximates that of the dry

Fig. 2. Temperature distribution for a whole thermal image (thin
line), and for a Vicia faba plant and dry and wet reference plants
(thick lines), extracted from the image. (A) A well-watered plant and
(B) a water-stressed plant.

Fig. 3. The relationship between the measured stomatal conductance
of Vicia faba and the calculated (A) linear thermal index IG and (B)
non-linear thermal index CWSI. The results were calculated by using
the Spectral Angle Mapper classi®cation method with the maximum
vector angle parameter set at 0.1 (closed symbols) and by using the
method based on wet and dry temperature thresholds (open symbols).

Table 1. Comparison of the results of the visual and automatic
classi®cation of the leaf area of Vicia faba with different
values of the maximum vector angle parameter

The percentage of actual leaf pixels (according to the visual
classi®cation) classi®ed as leaves and the percentage of actual
background pixels (according to the visual classi®cation) classi®ed as
background by the ENVI classi®cation. The results represent the
mean over 10 separate images.

Maximum spectral
angle

Number of
pixels

0.05 0.1 0.2 0.3 0.4

Plant accuracy (%) 36 57 76 90 96 425
Background

accuracy (%)
98 98 96 95 92 785
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reference and, therefore, the estimated dry reference
temperature remains rather stable. The different effects
on each component temperature (experimental plant, dry
and wet references) mean that the selection of the
classi®cation parameters may affect the calculated thermal
indices. Therefore, using a rather strict criterion for
classi®cation (small maximum vector angle) is probably
the best choice, since this excludes most of the mixed
pixels.

The relationships between stomatal conductance and the
calculated thermal indices for Vicia faba are shown in

Fig. 3. The linear correlation between conductance and IG

and the non-linear relationship between conductance and
CWSI were both in accordance with theory (equations (1)±
(3), Jones, 1999a). In the same ®gure, the relationship
between stomatal conductance and the thermal indices
calculated using the method based on threshold tempera-
tures (Jones et al., 2002) is also presented. Compared with
the automated classi®cation method, the threshold method
shows a much narrower range of the variation of calculated
indices, a much steeper slope, and also weaker correlation
with the conductance.

An example of the application of the method for
determining shaded and sunlit canopy temperatures sep-
arately is presented in Fig. 4. In addition to the grapevine
canopy, a complex ®lter paper reference including wet and
dry sectors and two other references, together with a
mounting tripod, are included in the image. In the
classi®ed image, three areas are separated. The area
classi®ed as sunlit canopy is shown as red, the shaded
canopy as green and non-canopy areas as blue. Although
the ®lter paper was recognized as non-canopy, much of the
mounting was not correctly identi®ed by the software.

Figure 5 shows temperature histograms for sunlit and
shaded areas of the grapevine canopy for (A) the natural

Fig. 4. An example of image processing to separate the shaded and sunlit leaves of of a grape-vine canopy (Vitis vinifera cv. Moscatel grown in
®eld conditions, with natural rainfall treatment). (A) An original Red±Green±Blue visible image, (B) corrected thermal image presented in a grey
scale, (C) visible image warped and cropped to match the thermal image, and (D) results of the classi®cation of the warped visible image; red,
classi®ed as sunlit leaf area; green, classi®ed as shaded leaf area; blue, classi®ed as non-leaf area.

Table 2. Effect of the value of the maximum vector angle
parameter on the estimated plant temperature

The mean temperatures calculated from 10 separate images of Vicia
faba. The standard deviation of the 10 mean temperatures is shown in
parenthesis.

Maximum angle Mean temperature (°C)

Wet
reference

Experimental
plant

Dry
reference

0.05 15.6 (1.44) 17.8 (1.57) 22.9 (1.60)
0.2 15.9 (1.36) 18.0 (1.53) 22.8 (1.66)
0.4 16.5 (1.37) 18.2 (1.47) 22.8 (1.65)
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rainfall treatment, and (B) full irrigation. The mean
temperatures and the corresponding standard deviations
of the temperature distributions for sunlit and shaded areas
for four replicate images from the fully irrigated and the
natural rainfall treatments are shown in Fig. 6. Generally,
the variance of the temperature in the shaded canopy was
greater than in the sunlit canopy, and the natural rainfall
treatment showed greater variance and higher temperatures
than the full irrigation treatment.

Discussion

Effective use of thermal imaging requires consistent,
preferably automated, methods for analysing the images.
This paper presents a method based on the parallel use of
thermal and visible images to measure the temperature
variation of whole plants and, further, to estimate stomatal
conductance in a non-contact manner. It is based on the
development of automated approaches to the identi®cation
of areas of interest, independently of the thermal image
itself, by the use of image analysis on either R/NIR or RGB
digital images. The methods used here for image process-
ing have been developed for, and are widely used in,
remote sensing (Campbell, 1996; Mather, 1999), but rarely
in small-scale ecological studies (Corp et al., 2003;
Schuerger et al., 2003).

The accuracy of the resulting temperature distribution
depends on two critical steps: (i) the overlaying of the
thermal and visible images, and (ii) the classi®cation of the
visible image. For overlaying, the selection of the GCPs is
particularly time-consuming, but if the same GCPs can be
used for several images, such as in a robotic analysis
system (Chaerle et al., 2003), the image processing would
be much more ¯exible. This requires, however, that the
position of both cameras would be exactly the same when
each image is taken. An alternative approach would be to
have a rigid mounting system for the cameras, where the
geometry is ®xed, so a standard overlaying algorithm that
would correct for differences in view angle and ®eld of
view could be applied in all situations.

The accuracy of classi®cation depends on identifying all
those pixels the spectral properties of which are close
enough (according to prede®ned criteria) to areas that
are known to represent the object of interest, in this case,
green leaves. The choice of classi®cation method and
criteria vary depending on both the camera wavebands
used (R/NIR or RGB) and on the properties of the objects
included in the image and the purpose of image processing,
and should be tested for any particular combination of
canopy and vegetation studied. In this study, two separate
classi®cation methods were used, Spectral Angle Mapper
and Minimum Distance; both were effective for the
glasshouse and the ®eld study (R/NIR and RGB images,
respectively). The main difference between these methods
is whether the brightness of the pixels is used as the
classi®cation criterion or not. In the case where the total
leaf area of plants is used to determine the temperature
distribution, brightness as a criterion is unnecessary and
may cause the incorrect exclusion of some of the leaves.
By contrast, where one aims to separate sunlit and shaded
leaves, the brightness is essential.

A key interest is to determine how this automated image
analysis compares with alternative methods for separation
of areas of interest. Manual selection (Jones et al., 2003) is

Fig. 5. Temperature distributions for shaded and sunlit leaves in Vitis
vinifera (cv. Moscatel) canopies: (A) natural rainfall treatment and (B)
fully irrigated treatment.

Fig. 6. The mean temperatures and standard deviations of temperature
distributions for four replicate images from shaded and sunlit Vitis
vinifera canopy from natural rainfall (NI) and fully irrigated (FI)
treatments.
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slow and subjective, while the use of background material,
the temperature of which differs from that of the objects of
interest (Guiliani and Flore, 2000; Pearce and Fuller,
2001), is not always possible or very practical, especially
in ®eld conditions. The use of wet and dry reference
surfaces as thresholds to determine limits of the canopy
temperature distribution has been proposed by Jones et al.
(2002). One problem, however, is that if the temperature of
the experimental plant is close to the temperature of either
the wet or dry reference, i.e. in cases with either very open
or very closed stomata, the temperature distributions of the
experimental plant and the wet or dry references unavoid-
ably overlap. In such cases, bias can arise as some
reference pixels are included and some plant pixels are
excluded.

Furthermore, in some cases the selection of leaf area on
the basis of reference thresholds alone may lead to
inclusion of objects other than leaves (e.g. stems or
ground), again potentially biasing the results. In the
greenhouse experiment of the present study, the tempera-
ture of the dry reference leaves was very close to the
background temperature. Therefore, the use of wet and dry
threshold temperatures led to the inclusion of substantial
background so that the differences of the actual plant
temperature between water-stressed and non-water-
stressed conditions were underestimated. In addition, the
temperature distribution of the experimental plant, esti-
mated by the threshold method, moved towards the
temperature of the dry reference. These effects together
had a major and substantial effect on the relationships
between stomatal conductance and either CWSI or IG

(Fig. 3) leading to the threshold method overestimating the
true gradient of the relationship between IG and con-
ductance, as assessed against the pixel classi®cation
method.

The criteria determining inclusion of pixels in a certain
class also substantially affect the outcome of the thermal
analysis (Table 2). The use of a strict classi®cation
excludes most of the mixed pixels from the thermal
image and reduces the effect of background in the thermal
analyses, even though some of the actual leaf area may also
be excluded. The proportion of mixed pixels depends on
the resolution of the thermal image (to which resolution the
visible image is resampled). The use of high resolution
thermal imagers, which, though more expensive, are
becoming more widely available, reduces the relative
proportion of mixed pixels and allows more effective
utilization of the thermal data.

An important application of image analysis is the
separation of shaded and sunlit parts of the canopy
(Ewing and Horton, 1999; Jones and Leinonen, 2003). In
an earlier study (Jones et al., 2002) the temperatures of the
shaded and sunlit grapevine canopy components were
estimated by manually selecting corresponding large areas
from shaded and sunlit sides of a canopy. In that case, the

greater temperature variance for the sunlit side probably
largely arose because of the substantial fraction of shaded
leaves visible on the sunlit side. The present method is
based on the classi®cation of the image pixel by pixel, so it
has potential to improve greatly the accuracy of calculating
the temperature distribution for the sunlit and shaded
leaves separately, as can be seen in Fig. 5.

By contrast with the earlier study (Jones et al., 2002),
the present results show that the temperature variance of
the sunlit leaves (as opposed to the sunlit side of the
canopy) is not higher, but actually lower, than that of the
shaded leaves. Although this does not appear to support the
idea (Fuchs, 1990), that the variability in leaf orientation
causes more variation in the leaf energy balance and
temperature in the sunlit than the shaded leaves, this result
may be related to two factors: (i) the leaf angle distribution
is not random for these canopies (see, for example, Fig. 4),
and (ii) the stomata are more closed in the shaded parts of
the canopy compared with the sunlit part (Jones et al.,
2002; de Souza et al., 2003), thus tending to increase the
variance in the shade (Fuchs, 1990). The present results
are, therefore, entirely consistent with Fuchs' idea that
temperature variation increases as stomata close (Fuchs,
1990); indeed the clear tendency for temperature and
variance to be greater for NI than for FI treatments (Fig. 6)
correlates well with the higher conductance observed for
the FI vines (Jones et al., 2002; de Souza et al., 2003).
More empirical data are needed to verify these results, but
it is possible that the temperature variation itself, in
addition to the absolute temperature, may become a useful
index for estimation of the stomatal conductance in ®eld
conditions.

In conclusion, the partly automated image processing
method presented in this study provides new applications
for thermal imaging in plant-stress studies. Compared with
earlier methods, the present method allows more accurate
determination of the thermal indices, which can be used to
estimate the level of stomatal conductance in the plant
canopy. Furthermore, the accurate separation of sunlit and
shaded parts of a canopy makes it possible to study the
possibilities of using temperature variation as an indicator
of stomatal conductance and plant stress.
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